International Seminar on Thorium Fuel 9 April 2014

1/19

Thorium fuel properties

A part of this study is the result of "Evaluation of $(Th,U)O_2$ fuel properties prepared by SPS technique with low-temperature property measurement" carried out under the Strategic Promotion Program for Basic Nuclear Research by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Yamanaka Laboratory muta@see.eng.osaka-u.ac.jp http://www.see.eng.osaka-u.ac.jp/seems/seems/ OH.Muta¹, T. Kawano¹, M. Uno² Y. Ohishi¹, K. Kurosaki¹, S. Yamanaka^{1,2}

¹ Osaka University ² University of Fukui

Thorium oxide (ThO_2) fuel is a good candidate as a secure alternative fuel. However, the basic fuel properties data are insufficient compared to those for uranium oxide (UO_2) system.

Number of papers (by Scifinder)

• Thorium oxide + fuel + thermal conductivity : 59 hits

• Uranium oxide + fuel + thermal conductivity : 463 hits

The physical properties data for ThO_2 system, including effects of the Fission Products (FPs), are needed.

In the present study, high density samples of the ThO₂ fuel system have been prepared by Spark Plasma Sintering (SPS) technique, and the thermomechanical properties are examined.

Content

- 1. Densification by Spark Plasma Sintering, SPS
 - Application of SPS for ThO₂
 - Porosity dependences of thermal conductivity and sound velocity.
- 2. Thermo-mechanical properties of ThO₂ system

In the reactor, multiple FP elements are generated. Some of them dissolve to the ThO_2 matrix, and others form metallic or oxide precipitates. Both effects should be considered.

1. Densification by SPS

Application of Spark Plasma Sintering (SPS)

 SPS is electric current-assisted hot-pressing. The concentrated electric current and voltage activate the powder surfaces, which promotes sintering procedure.

• SPS with only 10 minutes at 1873 K can produce >95 %TD ThO₂ samples.

Porosity dependence of thermal conductivity 5/19

The approximation formula corresponds the porosity and temperature dependence.

Porosity dependence of (a) longitudinal sound velocity V_L, share sound velocity V_S and (b)Young's modulus.

$$E = \frac{G(3V_{L}^{2} - 4V_{S}^{2})}{(V_{L}^{2} - V_{S}^{2})} \qquad v = \frac{1}{2} \cdot \frac{V_{L}^{2} - 2V_{S}^{2}}{V_{L}^{2} - V_{S}^{2}} \qquad \theta_{D} = \frac{h/k (9N/4\pi V_{C})^{\frac{1}{3}}}{(1/v_{L}^{2} + 2/v_{L}^{2})^{\frac{1}{3}}}$$

 The porosity dependence of elastic properties can be determined from those for the sound velocity. -0.2

-0.4

-0.6

-0.8

-1.0

-1.2

x=0

x=0.4

x=0.8

SPS Temperature (K)

x=0.2

x=0.6

x=1.0

 $\underline{\text{Th}}_{1-x}U_{x}O_{2}$ sample appearance.

x=0.1

x=0.5

x=0.9

Displacement (mm)

In spite of the rapid sintering, high density pellets are obtained by SPS compared to usual pressureless sintering.

Thermo-mechanical properties of (Th,U)O₂ _{8/19}

- Thermo-mechanical data of $Th_{1-x}U_xO_2$ with wide range of composition *x* are obtained.
- E = 264.3 44.3x for $Th_{1-x}U_xO_2$ (GPa)

2.2 FP elements added ThO₂

Typical 6 elements:

- trivalent FP: Y, La, Nd, Gd
- tetravalent FP:Ce, U

were added to ThO_2 .

Ball milling of each oxide

Heat treatment at1873 K for 72 hours

Ball milling for 12 hours

SPS (1873 K, 10 min)

Heat treatment* and measurement

*All Ce, U and Y, La, Nd, Gd are assumed to be tetravalent and trivalent.

Table 2 *

Actinide and fission product inventories ^{a)} for $(Th_{0.81}U_{0.19})$ O₂ after a burnup of 21.5% FIMA in an HTGR environment

Atoms per initial 1000 atoms of Th + U

[Th] ^b	725.58	[Nd]	42.33
[U]	51.86	[Ce]	33.49
Pa	2.02	[La]	13.00
Np	3.12	[P _T]	12.70
Pu	2.42	[Y]	10.67
Am	0.12	[Sm]	5.72
		Gđ	3.12
[Mo]	49.07	Eu	1.06
Tc	9.70	Pm	0.43
[Ru]	23.07		
[Rh]	1.20	[Zr]	67.44
[Pd]	7.91	[Sr]	20.12
		[Ba]	1 5.67

*M. Ugajin, et al., JNM, 84 (1979) 26.

Sample appearance

Lattice parameter prediction

10/19

Lattice parameter linearly changes with amount of FP elements.

From the data, lattice parameter can be predicted by only using Shannon's ionic radii.

Thermal conductivity change by FP

11/19

$$C = \frac{k_B}{2\pi^2 v} \int_0^{k_B \theta/T} \tau_{total} \left(\frac{h\omega}{k_B T}\right)^2 \frac{\exp(h\omega/k_B T)}{[\exp(h\omega/k_B T) - 1]} \omega^2 d\omega$$
Phonon's
relaxation time : $\frac{1}{\tau_{total}} = \frac{1}{\tau_D} + \frac{1}{\tau_P}, \quad \frac{1}{\tau_D} = A\omega^4, \quad \frac{1}{\tau_P} = CT\omega^2$
Point defect scattering Phonon-phonon scattering
$$C = \frac{k_B^2 \theta}{2\pi^2 v h T} \cdot \frac{1}{\kappa_{ThO 2}} \quad \rightarrow \text{determined from data of}$$

$$A = \frac{\delta^3}{4\pi v^3} \sum_i x_i (1 - x_i) \left[\left(\frac{\Delta M}{M}\right)^2 + \varepsilon \left(\frac{\Delta r}{r}\right)^2 \right] + y\Delta O$$
Mass Ionic radii Oxygen defect

Determination of parameters of ϵ and ΔO provides thermal conductivity estimation

P. G. Klemens, Proc. Phys. Soc. (London), Vol. A68 (1955) pp. 1113.
J. Callaway, et al., Phys. Rev., Vol. 120 (1960) pp. 1149-1154.
B. Abeles, Phys. Rev., Vol. 131 (1963) pp. 1906.

ε = 18.3, ΔO = 1.49

Quantification of phonon scattering and estimated thermal conductivity κ_{est}

composition	Mass difference (×10 ⁻²)	lonic radius difference (×10 ⁻²)	Oxygen defect (×10 ⁻²)	А (×10 ⁻⁴³)	_{Kest} (Wm⁻¹K⁻¹)	^{к_{ехр} (Wm⁻¹K⁻¹)}
ThO ₂	-	-	-	-	-	17.8
Th _{0.90} Y _{0.10} O _{1.95}	7.93 (51 %)	0.295 (1.9 %)	7.45 (48 %)	44.4	5.1	5.0
Th _{0.90} La _{0.10} O _{1.95}	3.36 (23 %)	3.78 (26 %)	7.45 (51 %)	41.3	5.8	5.7
Th _{0.90} Ce _{0.10} O ₂	3.27 (61 %)	2.08 (38.8 %)	-	15.1	9.2	7.8
$\rm Th_{0.90} \rm Nd_{0.10} \rm O_{1.95}$	2.99 (26 %)	1.10 (9.6 %)	7.45 (65 %)	32.7	5.2	5.5
$\rm Th_{0.90}Gd_{0.10}O_{1.95}$	2.17 (23 %)	0.00292 (0%)	7.45 (77 %)	27.2	6.7	6.1
Th _{0.90} U _{0.10} O ₂	0.0139 (1.6 %)	0.878 (98.4 %)	-	2.53	12.8	13.3

• Thermal conductivity of ThO₂, including arbitrary amount of porosity, FP elements can be estimated from the results.

 \rightarrow peaks from impurity phase were detected.

ThO₂-simfuel was prepared to estimate precipitates in ThO₂ fuel.

- FP composition: simulated APWR situation*
 - ➢ Y, (Zr), La, Ce, Nd, U
 - Sr, Ba, (Zr)
 - Mo, Ru

*A.N. Shirsat, et al, J. Nucl. Mater., 392 (2009) 16.

- FP amount : 20 GWd/t × 10
- Reaction temp. :1200°C, 1500°C,1600°C
- O₂ potential : -310 kJ/mol~-200 kJ/mol

Sample appearance. Darker samples are treated at $\Delta O=-310$ kJ/mol.

FP precipitates in ThO₂-SIMFUEL

14/19

• $RE_2Zr_2O_7$ (RE=La, Pr, Eu, Nd, Gd, Dy) and $Nd_2Ce_2O_7^*$ were prepared by solid state reaction.

 ~94 %T.D. samples were obtained by SPS (sintered at 1773 K for 10 minutes).

> *Ugajin reported that Nd₂(Zr,Ce)₂O₇ was observed. M. Ugajin, K. Shiba, J. Nucl. Mater., 91 (1980) 227.

(a) Temperature dependence and (b) relation to ionic radii of RE of thermal conductivity.

• The values of thermal conductivity for pyrochlore oxide are $1\sim3$ Wm⁻¹K⁻¹, significantly lower than those for ThO₂.

Comparison of properties with ThO₂

17/19

 The low thermal conductivity attributes to the complex crystal structure.

Application of FEM

Evaluation of fuel properties : Matrix properties + Precipitate properties + Microstructure + •••

16 14 Calculation Thermal conductivity, κ / Wm⁻¹K⁻¹ - ThO₂ + 5 vol% Nd₂Zr₂O₂ 12 Experimental 10 ThO Nd₂Zr₂O₂ 8 (Example) Ba distribution in MOX fuel* 2 0 Constant 200 400 600 800 1000 1200 1400 1600 heat flux Temperature, T / K Thermal conductivity of 5 vol%Nd₂Zr₂O₇including ThO₂ estimated by FEM Center of fuel high temp. low temp.

*K. Tanaka, et al, J. Nucl. Mater., 414 (2011) 316.

 \rightarrow by FEM

 It is confirmed that high density samples of ThO₂ based compounds and pyrochlore oxide can be obtained by SPS technique.

 Porosity dependence of thermal conductivity and sound velocity for ThO₂ is determined.

• Thermo-mechanical properties of $(Th,U)O_2$ are measured and some of them are formulated.

• FP element-dissolved ThO₂ samples are fabricated. The effects of FP element on thermal conductivity and lattice parameter are quantitatively formulated.

• As a unique precipitate in ThO_2 fuel, pyrochlore oxides are fabricated and the thermo-mechanical properties are measured. The thermal conductivity is significantly lower than that of ThO_2 due to the complex crystal structure.